US009471696B2

a2 United States Patent

Seetharama et al.

US 9,471,696 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND SYSTEMS FOR PATHING USPC oo 709/221-225, 238-253
ANALYSIS See application file for complete search history.
(75) Inventors: Gururaj Seetharama, Bangalore (IN); (56) References Cited
Shaji Illias Chennan Kunnummel,
Kozhokode (IN) U.S. PATENT DOCUMENTS
(73) Assignee: Yahoo! Inc., Sunnyvale, CA (US) 6,158,022 A * 12/2000 Avidan ..., 714/33
7,774,440 B1* 8/2010 Bagrodia et al. 709/221
(*) Notice: Subject to any disclaimer, the term of this 588;//8};2?% i}: ggggé gﬁoedtl """ : 3707/(3)3/52341‘
: : ana et al.
%atselg llssix{)engedl loélagJu“ed under 35 2009/0063516 Al* 3/2009 Wang et al. 707/100
8.C. 154(b) by ays. 2009/0097418 AL* 42009 Castillo et al. 3701255
(21) Appl. No.: 12/945,653 * cited by examiner
(22) Filed: Nov. 12, 2010 Primary Examiner — Chris Parry
Assistant Examiner — Weiwei Stilt
(65) Prior Publication Data ssistant xaminer el\fvel et . .
(74) Attorney, Agent, or Firm — Mauriel Kapouytian
US 2012/0124030 Al May 17, 2012 Woods LLP; Serge Krimnus; James Woods
(51) Int. CL (57) ABSTRACT
GO6F 15/173 (2006.01)
GO6F 17/30 (2006.01) Methods, systems and computer program products for path-
GO6F 3/06 (2006.01) ing analysis are provided. The method includes receiving at
GO6F 12/08 (2016.01) a server, a query comprising one or more nodes. The method
GOG6F 11/10 (2006.01) further includes identifying one or more prior queries,
(52) US.CL wherein the one or more prior queries comprise at least one
CPC ... GO6F 17/30876 (2013.01); GO6F 3/067 of the one or more nodes. The method accesses metadata
(2013.01); GO6F 11/1076 (2013.01); GO6F associated with the one or more prior queries. The method
12/0813 (2013.01); GOGF 17/30442 (2013.01); then selects based on the metadata, one or more data
GOG6F 17/30463 (2013.01); GO6F 17/30477 partitions for further processing. Next, the method causes
(2013.01); GO6F 17/30864 (2013.01) one or more computers to identify one or more paths in the
(58) Field of Classification Search selected data partitions, wherein the one or more paths

CPC GOG6F 3/067; GO6F 17/30864; GOGF
11/1076; GOGF 12/0813; GOG6F 17/30442;
GOGF 17/30463; GOGF 17/30477, GOGF

comprise at least the one or more nodes. Finally, the method
presents the identified paths as an output to the query.

17730876 21 Claims, 6 Drawing Sheets
Yot om
Chant 302 -
4
Cacineny
% i) Bysiein

Saever

Haeh maps

342

U.S. Patent Oct. 18, 2016 Sheet 1 of 6 US 9,471,696 B2

e veen rree rrre were revec srree. eveee ceeer reen’ orere vore.

Path Analysis %y‘ﬁ%ém

Mabwork

ClHeand

FiG. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 6 US 9,471,696 B2

Fes £ froen
Chent 104 - 24

209

Caching
a6 System

balt
HMash maps
Berver * =
212
Mets Daty B
Tabila
s . SR vt . STV JURUTOUNG. -
g [P " { A
: ! i
g § 206 ; e :
Slave L : Blave : ;
cemputer g“s P stmptsr . | computer l,,
k % i k : : 3
: : ; |
i B SR SN
/ e o % 3 g on e
‘*wnw,w.,ww’g P £3 : E e, e ;3{}53
Data @ : © | Dams LY
: 3
starg ; ; : shore
o s s e e o w2 i LMM.,.WWWWWNMMMMM-' T e o e e s s e

U.S. Patent Oct. 18, 2016 Sheet 3 of 6 US 9,471,696 B2

IR £ 30
i 3
Node combinations Prior quernias

SRO BELG A B -1

SRO~A-B-0 -~

SRE -8 -~

SRO. DY BRC - A - OB

BROC ~ A - B - D87

SRC ~ B - D - DST

SR, ViA 8T SRC - YiA - D8T

BRO -~ A& ~VIA-B - DT

SRE A B VIS = O - DET

- 300

FiG. 3

U.S. Patent

US 9,471,696 B2

Oct. 18, 2016 Sheet 4 of 6
Py s2: A0 - S0 oS08 410
Priov gqusry Dinta pargtion | Number of Bdnxirmiam Mintmum
identifiar urigue paths | fraguenoy frequeany
A-B - Py 3 GO 75
23 2 st i3
£3 2 50 30
24 4 30 20
Ao T3 e B 11 124 B0
B3 e &5 34
Py 3 82 52
8.0 Bz 2 82 21
P3 4 12 3

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 6 US 9,471,696 B2

Path analysis system recelves ol a server, aguery |
coampising one ot mom nodes

i &1

Path analysis systern identifies one or more price |/
guaries having the one or mom nodes

Path analysls system goossses matadals
associated with the one of owee pdor guariaes

Path analysis system sadects based on the
martadata, one o more date paditions for further 3
procRSsing

Path analysis systom osuses ong o more 816
somputars 1o ldentify ong or more pathsinthe
selected dals partiions

i

Path sngdysis syslam presents the idantified paths
#5 an output o the query

st

o BT
joolld
]

b

U.S. Patent Oct. 18, 2016 Sheet 6 of 6 US 9,471,696 B2

o RS
Procaessor .
g3
E-3
* w Cache "
k4 ki &
- Motwork
HMost Bridoe | &M .
ost Bridge jf"‘g* rdariace
& B
E 3 el Wi R i

% 2

&
©w
"‘ﬁ:
(i
ié&.
3
2
po
&
g}.
“(73
£
P
&
\/?

55
[223

- rd

Systeat Mamory -
5o VG Bus
Fath Analysis code E/ Bridge

.

ﬂg I - B4 i \
< Starwimrd 0 Bus e

[3 ; £ &
k.4 A A4

hinsy Storasgs Hayboard,
838 HO Porty Puinting Display
S Path devices
T analysis ;
code g1 B g 0%

S8

608 e

FiG. 6

US 9,471,696 B2

1
METHODS AND SYSTEMS FOR PATHING
ANALYSIS

TECHNICAL FIELD

The present invention generally relates to analysis of node
and path type data and more specifically to querying systems
thereof.

BACKGROUND

Path analysis is a process of analyzing the formation of a
path by a sequence of nodes. Path analysis is employed in
various fields such as, but not limited to, internet website
traffic analytics, protein sequencing, virus and malicious
software detection algorithms, text analysis algorithms, and
so forth. A path analysis system may accept a sequence or
combination of nodes and identify paths that include the
sequence or combination of nodes. For example, an internet
website traffic analysis system may accept the source and
destination web pages as input, and identify the various
navigation patterns followed by visitors of the website to
navigate from the source web page to the destination web
page.

Path analysis may be characterized by analyzing large
amounts of logged data. Such logged data includes, without
limitation, web page access requests, protein molecules,
virus signatures, linguistic constructs, and so forth. Indexing
of the logged data may not be feasible, nor possible, due to
the large amount of the logged data. Therefore, current path
analysis systems may process the entire amount of logged
data to identify pertinent paths based on the input node
sequences or node combinations. This may require a sig-
nificant amount of processing power. Path analysis, in
Internet website analytics, is a process of determining a
sequence of pages visited in a visitor session prior to some
desired event, such as the visitor purchasing an item or
requesting a newsletter. The precise order of pages visited
may or may not be important and may or may not be
specified. In practice, this analysis is done in aggregate,
ranking the paths (sequences of pages) visited prior to the
desired event, by descending frequency of use. The idea is
to determine what features of the website encourage the
desired result. “Fallout analysis,” a subset of path analysis,
looks at “black holes™ on the site, or paths that lead to a dead
end most frequently, paths or features that confuse or lose
potential customers.

Some known implementations of path analysis systems
utilize a distributed computing architecture. Such distributed
computing architecture may provide the required amount of
processing power. However, as the amount of logged data
increases over time, proportional increases in the processing
power may be required. This may incur additional costs for
upgrading the distributed computing architecture.

Further, processing of the large amount of logged data
may require that a significant amount of data be transferred
back and forth between compute nodes within the distrib-
uted computing architecture. Again, as the amount of logged
data increases, the data transfer links may need to be
upgraded over time.

SUMMARY

In particular embodiments, the present invention provides
methods, systems and computer program products for path-
ing analysis. Particular embodiments provide an efficient
mechanism of caching meta-data generated from the history

10

15

20

25

30

35

40

45

50

55

60

65

2

of pathing queries to improve the performance of a current
submitted query. The method includes receiving at a server,
a query comprising one or more nodes. The method further
includes identifying one or more prior queries, wherein the
one or more prior queries comprise at least one of the one or
more nodes. The method accesses metadata associated with
the one or more prior queries. The method then selects based
on the metadata, one or more data partitions for further
processing. Next, the method causes one or more computers
to identify one or more paths in the selected data partitions,
wherein the one or more paths comprise at least the one or
more nodes. Finally, the method presents the identified paths
as an output to the query.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example environment in which a path
analysis system may operate, according to one embodiment
of the present invention;

FIG. 2 illustrates an example path analysis system,
according to one embodiment of the present invention;

FIG. 3 illustrates an example hash map, according to one
embodiment of the present invention;

FIG. 4 illustrates an example metadata table, according to
one embodiment of the present invention;

FIG. 5 illustrates an example process for path analysis,
according to one embodiment of the present invention; and

FIG. 6 is a schematic diagram illustrating an example
computing system for generating one or more personalized
identifiers according to one embodiment.

DETAILED DESCRIPTION

Various embodiments of the present invention will be
described in detail below with reference to accompanying
drawings. It will be apparent, however, that these embodi-
ments may be practiced without some or all of these specific
details. In other instances, well known process steps or
elements have not been described in detail in order not to
unnecessarily obscure the description of the invention. The
following example embodiments and their aspects are
described and illustrated in conjunction with apparatuses,
methods, and systems which are meant to be illustrative
examples, not limiting in scope.

Example Network Environment

FIG. 1 illustrates an example environment 100 in which
embodiments of the present invention may operate, accord-
ing to one embodiment. The environment 100 includes a
path analysis system 102, one or more clients 104, and a
network 106.

Path analysis system 102 may service queries expressed
in the form of one or more nodes to retrieve one or more
paths defined by the one or more nodes. One example
pathing analysis system 102 may be implemented for ana-
lyzing internet website traffic. In such an implementation,
the nodes may be web pages of interest and the paths may
be the sequence in which users navigate through the web
pages of interest. Another example pathing analysis system
102 may be implemented for matching or searching protein
structures. In such an implementation, the nodes may be the
molecules of a protein, and the paths may be the structure of
the protein. Yet another example pathing analysis system
102 may be implemented for virus detection. In such an
implementation, the nodes may be virus signatures or parts
thereof, and the paths may be the byte pattern of a digital file
being scanned for viruses. Further, such an implementation
may also be used for detection of spyware and other mali-

US 9,471,696 B2

3

cious software. It will be appreciated that path analysis
system 102 may be implemented in other scenarios as well,
where a path defined by the one or more nodes is to be
retrieved using the one or more nodes as the query.

According to one embodiment, path analysis system 102
may be implemented as a distributed computing system. The
distributed computing system may facilitate the partitioning
of a data set, and parallel processing of the partitions of the
data set by a number of slave computers. Path analysis
system 102 receives the queries from clients 104. Path
analysis system 102 may then search a caching system to
check if clients 104 had submitted the same or a similar
query (referred to herein as “prior query”) in the past. If path
analysis system 102 determines that a prior query exists in
the caching system, path analysis system 102 may leverage
the output of the prior query to facilitate processing of the
query. Path analysis system 102 is described in detail in
conjunction with FIG. 2.

Clients

Client 104 is a computing device from which a user
accesses path analysis system 102. Client 104 has the
capability to communicate over network 106. Client 104
further has the capability to provide the user an interface to
interact with path analysis system 102. Client 104 may be,
for example, a desktop computer, a laptop computer, a thin
client, and the like. Client 104 may execute one or more
client applications such as, without limitation, a web
browser to access and view content over a computer net-
work, a query tool for constructing and submitting queries
for path analysis, a path statistics tool for viewing results of
pathing analysis queries, and report generation tools for
generating reports for the results of pathing analysis.

Network

Network 106 generally represents one or more intercon-
nected networks, over which path analysis system 102, and
clients 104 can communicate with each other. Network 106
may include packet-based wide area networks (such as the
Internet), local area networks (LAN), private networks,
wireless networks, satellite networks, cellular networks,
paging networks, and the like. A person skilled in the art will
recognize that network 106 may also be a combination of
more than one type of network. For example, network 106
may be a combination of a LAN and the Internet. In
addition, network 106 may be implemented as a wired
network, or a wireless network or a combination thereof.
Clients 104 are communicatively coupled to network 106
via a network service provider or any other suitable methods
known in the art.

Path Analysis System

FIG. 2 illustrates an example path analysis system 102,
according to one embodiment of the present invention. Path
analysis system 102 includes a server 202, a caching system
204, one or more slave computers 206, and one or more data
stores 208. The caching system 204 may further include one
or more hash maps 210, and one or more metadata tables
212.

Server 202 accepts the query from clients 104. The query
may include one or more nodes. For example, the nodes may
be web pages of a website, including without limitation, a
source node, a destination node, and a via node. The source
node may represent the originating web page of a user’s
navigation through a website. The destination node may
represent the final web page that the user visits before
navigating away from the website. The via node may
represent the intermediate web pages that the user visits in
the website between the originating web page and the final

10

15

20

25

30

35

40

45

50

55

60

65

4

web page. The nodes may define one or more paths corre-
sponding to a navigation pattern of the different web pages
of the website.

In one implementation, server 202 may accept queries
such as, “list all paths which start with a source node based
on the number of visits”; “list all paths which start with a
source node and end at a destination node based on the
number of visits”; and “list all paths which start with a
source node, end at a destination node and passing through
one or more via nodes based on the number of visits. Each
query may result in a number of node combinations. For
example, a query “list all paths which start at nodes S1 or S2,
pass through nodes V1 or V2, and end at nodes D1 or D27,
would result in eight node combinations, such as (S1, V1,
D1),(81,V1,D2),(S1,V2,D1), (S1,V2,D2), (S2,V1, D1),
(S2, V1, D2), (82, V2, D1), and (S2, V2, D2). Server 202
may then query the caching system 204 using the node-level
combinations. Upon receiving the query, server 202 may
access caching system 204 to identify data partitions for
processing.

In one implementation, path analysis system 102 utilizes
a two-level partition structure to partition the data stored in
data store 208. At a high-level partition, the data may be
partitioned at the node-combination level. For example, if a
query identifies source nodes as S1 or S2, via nodes as V1
or V2, and destination nodes D1 or D2, there would be eight
high-level partitions at the node-combination level, such as
(S1,V1,D1), (81, V1, D2), (81, V2,D1), (S1, V2, D2), (S2,
V1,D1),(S2,V1, D2),(82,V2,D1), and (82, V2, D2). Each
high-level partition may then be further partitioned into one
or more low-level partitions, based on the path lengths. For
example, for node combination (S1, V1, D1), there may be
a low-level partition for path length of 3 nodes i.e. (S1-V1-
D1); another low-level partition for path length of 4 nodes
such as (S1-V1-X-D1), (S1-Y-V1-D1), and so forth. Parti-
tion identifiers of the data partitions may be stored at caching
system 204.

Caching system 204 may include information correspond-
ing to prior queries serviced by server 202. Such information
may include, without limitation, node combinations, prior
queries including the node combinations, partition identifi-
ers of one or more data partitions, frequency of occurrence
of one or more paths including the node combinations, and
so forth. In one embodiment, caching system 204 may store
such information in the hash maps 210 and the metadata
tables 212.

Hash map 210 may include information to identify prior
queries that include the node combination received in the
query. In one embodiment, hash map 210 includes a list of
node combinations, and the prior queries that include the
node combinations. In the example implementation of path
analysis system 102 for website traffic monitoring, caching
system 204 may include hash map 210 for each node
combination. For example, caching system 204 may include
a source hash map including a list of nodes, and the prior
queries that include the listed nodes as source nodes; a
source-destination hash map including a list of ordered node
pairs, and the prior queries that include the node pairs as
source and destination nodes respectively; and a source-via-
destination hash map including a list of ordered node
combinations, and the prior queries that include the node
combinations as source, via, and destination nodes respec-
tively. In one embodiment, hash maps 210 may store the
prior queries as unique hash values. In another embodiment,
hash maps 210 may store the prior queries as unique
identifiers. An example hash map 210 is illustrated in FIG.
3.

US 9,471,696 B2

5

Metadata tables 212 may include information associated
with each prior query. Such information may include, with-
out limitation, a list of prior queries, data partition identifi-
ers, a number of unique paths including the node combina-
tion, a maximum frequency associated with a first unique
path including the node combination, and a minimum fre-
quency associated with a second unique path including the
node combination. Such information may be stored in the
form of a tuple, where each tuple may comprise the partition
identifier, total number of node-combinations or high level
partitions output subsequent to processing of the data par-
tition, a maximum frequency associated with a first unique
path including the node combination, and a minimum fre-
quency associated with a second unique path including the
node combination. As explained in the preceding para-
graphs, a query such as source node=S1 or S2, via node=V1
or V2, and destination node=D1 or D2, will have eight
different node combinations. In this case, metadata tables
212 includes a distinct tuple for each of the eight different
node combinations. Each tuple may have a unique identifier
or a unique hash value associated therewith. The unique
identifier or unique hash value may be inserted into hash
map 210. For a prior query including a source node, a
destination node, and a via node, the unique identifier or
unique hash value may be inserted in all three hash maps 210
i.e. the source-via-destination hash map, the source-destina-
tion hash map, and the source hash map. For a prior query
including a source node and a destination node, the unique
identifier or unique hash value may be inserted in two hash
maps 210 i.e. the source-destination hash map, and the
source hash map.

Every time server 202 receives a query, caching system
204 may update hash maps 210 and metadata tables 212 for
future queries. An example metadata table 212 is illustrated
in FIG. 4

Hash map 210 and metadata tables 212 together provide
a two-level partitioning of data stored in data store 208.
Hash maps 210 define high level partitions on the node
combination level, while metadata tables 212 define low
level partitions based on path length. Upon receiving a
request from server 202, caching system 204 may access
first access hash maps 210 and identify one or more high
level partitions based on the node combination included in
the query. Caching system 204 may then access metadata
tables 212 to identify one or more low level partitions based
on the prior queries identified using hash map 210. Thus, by
accessing hash map 210 and metadata tables 212, caching
system 204 identifies data partitions, which upon process-
ing, may collectively yield a predefined number of most
frequently occurring paths. Caching system 204 may then
transfer the partition identifiers to server 202. In one
embodiment, caching system 204 may order the partition
identifiers to generate a processing order list. The processing
order list may define the order in which slave computers 206
may process the data partitions to identify the predefined
number of most frequently occurring paths. The processing
may be terminated when the predefined number of most
frequently occurring paths is identified.

Server 202 may then transfer the partition identifiers
and/or the processing order list to slave computers 206, for
further processing. Slave computer 206 may then process
the data stored in data stores 208. Slave computer 206 may
process only the data partitions associated with the received
partition identifiers. In one embodiment, slave computer 206
may process the data partitions associated with the received
partition identifiers in the order defined in the processing
order list.

10

15

20

25

30

35

40

45

55

60

6

Slave computers 206 may process the selected data par-
titions using any suitable processing techniques for pathing
analysis, to identify one or more frequently occurring paths.
Slave computers 206 may then transfer the identified paths
to server 202. Server 202 may then consolidate the fre-
quently occurring paths received from each of the slave
computers 206 and present the consolidated list of fre-
quently occurring paths as output to the query. In one
embodiment, server 202 may select a predefined number of
most frequently occurring paths from the consolidated list,
and present the selected paths as output to the query.

Hash Map

FIG. 3 illustrates an exemplary hash map 300 according
to one embodiment of the present invention. Hash map 300
includes a list of node combinations 302, and hash values
304 of prior queries that include the corresponding node
combinations.

Metadata Table

FIG. 4 illustrates an exemplary metadata table 400
according to one embodiment of the present invention.
Metadata table 400 includes a list of prior queries 402, data
partition identifiers 404, a number of unique paths including
the node combination 406, a maximum frequency 408
associated with a first unique path including the node
combination, and a minimum frequency 410 associated with
a second unique path including the node combination.

Path Analysis

FIG. 5 is a flowchart illustrating an example process for
path analysis, according to one embodiment of the present
invention. At step 502, path analysis system 102 receives a
query. The query includes one or more nodes. For example,
the query may include a source node, a via node, and a
destination node representing web pages in a user’s navi-
gation pattern through a website.

At step 504, path analysis system 102 identifies one or
more prior queries, that have at least one of the nodes
included in the received query. In other words, path analysis
system identifies prior queries somewhat or exactly similar
to the received query. As described in conjunction with FIG.
2, a server 202 may access caching system 204 to identify
prior queries from the hash maps 210 stored thereon. Server
202 may parse the query into a node combination, and
transfer it to caching system 204. Caching system 204 may
then use the node combination to search for prior queries
that include one or more nodes included in the node com-
bination. Caching system 204 may return prior queries if
found in hash maps 210. In one embodiment, hash maps 210
may store the prior queries as unique hash values. Caching
system 204 may then use the unique hash values (or prior
queries, depending on the implementation) to access meta-
data associated with the prior queries.

For example, caching system 204 may first access the
source hash map and search for prior queries including the
source node. If no such prior queries are found, caching
system 204 may indicate to server 202 that the received
query is a new query, and terminate the process. Caching
system 204 may then access the source-destination hash
map, and search for the source node, and the destination
node in that order. If no prior queries including the desti-
nation node are found, caching system 204 may indicate to
server 202 that the received query is a relaxed query. In other
words, the received query may not have an exact match in
the prior queries, but a partial match with one or more prior
queries is possible. If prior queries including both the source
node and the destination are found, and are the same as the
prior queries found from the source hash map, caching
system 202 may indicate to server 202 that the received

US 9,471,696 B2

7

query is a relaxed query. Finally, caching system 204 may
access the source-via-destination hash map, and search for
the source node, the via node, and the destination node. If
prior queries including the source node, the via node, and the
destination node are found from the source-via-destination
hash map, and are the same as the prior queries found from
the source-destination hash map, caching system 204 may
indicate to server 202 that the received query is an exact
match to a prior query. Caching system 204 may then utilize
the exact match prior query or partial match prior queries to
access metadata tables 210.

At step 506, path analysis system 102 accesses metadata
associated with the prior queries. The metadata associated
with the prior queries includes, without limitation, data
partition identifiers, a number of unique paths including the
node combination, a maximum frequency associated with a
first unique path including the node combination, and a
minimum frequency associated with a second unique path
including the node combination. As described in conjunction
with FIG. 2, caching system 204 may access metadata tables
212 using the identified prior queries. Caching system 204
may retrieve the metadata from metadata tables 210 for
further processing.

At step 508, path analysis system 102 selects based on the
metadata, one or more data partitions for further processing.
In one embodiment, caching system 204 may analyze fre-
quency of the least frequently occurring paths for each prior
query. Caching system 204 may then designate the maxi-
mum frequency among these as a threshold. Caching system
204 may then compare the frequencies of the most fre-
quently occurring paths for each query with the threshold.
Caching system 204 may append data partition identifiers
corresponding to the most frequently occurring paths whose
frequency exceeds the threshold. In other words, caching
system 204 may select the data partitions that include the
most frequently occurring paths.

For example, with reference to FIG. 4, caching system
204 may analyze the frequency of least frequently occurring
paths 410. Caching system 204 identifies 75 as the maxi-
mum frequency among the least frequently occurring paths
410 with respect to prior query A-B-C, and sets it as the
threshold. Caching system 204 then compares the frequency
of the most frequently occurring paths for prior query
A-B-C, and identifies partitions P1 and P2 as exceeding the
threshold, and selects partitions P1 and P2 for further
processing.

In one embodiment, caching system 204 may order the
selected data partitions into a processing order list. The
processing order list may define the order in which slave
computers 206 may process the data partitions to identify the
predefined number of most frequently occurring paths.

At step 510 path analysis system 102 causes one or more
computers to identify one or more paths in the selected data
partitions. The paths include at least the nodes included in
the query. As described in FIG. 2, server 202 may cause
slave computers 206 to process the selected data partitions
and identify one or more paths that include the nodes in the
query. The identified paths may or may not include other
nodes. Slave computers 206 may use any known technique
to process the data partitions and identify the one or more
paths. In one embodiment, slave computers 206 may process
the data partitions in the order defined in the processing
order list. After a data partition has been processed, slave
computers 206 may transfer the identified paths to server
202.

At step 512 path analysis system 102 presents the iden-
tified paths as an output to the query. In one embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

8

server 202 selects a predefined number of most frequently
occurring paths from the identified paths. One example
implementation of a process for selecting the predefined
number of most frequently occurring paths is described
below.

Server 202 receives the identified paths after the selected
data partitions are processed by all slave computers 206.
Server 202 may thus have lists of identified paths for each
of the selected data partition from each slave computer 206.
Server 202 may receive frequency of occurrence of each
identified path. Server 202 may then consolidate the lists for
each data partition from all slave computers 206, and
determine total frequencies of occurrence of each identified
path. Server 202 may also determine a mean of the total
frequencies of occurrence for each data partition. In some
embodiments, server 202 may also determine a logarithm of
the variance of the frequencies of occurrence for each data
partition.

Server 202 may then select a first data partition. The first
data partition is the data partition with the highest mean of
the total frequencies of occurrence. Server 202 may then
append into a top results list, the identified paths of the first
data partition whose frequency of occurrence exceeds the
highest frequency of occurrence of any identified path in the
other data partitions. Server 202 may then repeat the selec-
tion process for the remaining data partitions, till the pre-
defined number of most frequently occurring paths is
included in the top results list. Server 202 may then present
the top result list as an output to the query.

Path Analysis System Architecture

FIG. 7 illustrates an example hardware system 600 to
implement path analysis system 102 according to one
embodiment. Hardware system 600 includes at least one
processor 602, a system memory 604, and mass storage 606.
The system memory 604 has stored therein one or more
application software, programming instructions for imple-
menting path analysis system 608, an operating system and
drivers directed to the functions described herein. Mass
storage 606 provides permanent storage for the data and
programming instructions for path analysis system 608,
whereas system memory 604 (e.g., DRAM) provides tem-
porary storage for the data and programming instructions
when executed by processor 602. The process flow of the
programming instructions for path analysis system 102 is
described in detail in conjunction with FIG. 3. In one
embodiment, hash maps 210 and metadata tables 212 may
reside in mass storage 606. A network/communication inter-
face 610 provides communication between hardware system
600 and any of a wide range of networks, such as an Ethernet
(e.g., IEEE 802.3) network, etc. Additionally, hardware
system 600 includes a high performance input/output (I/O)
bus 612 and a standard /O bus 614. System memory 604
and network/communication interface 610 couple to bus
612. Mass storage 606 couple to bus 614. /O Bus Bridge
616 couples the two buses 612 and 614 to each other.

In one embodiment, path analysis process 300 described
herein is implemented as a series of software routines run by
hardware system 600. These software routines comprise a
plurality or series of instructions to be executed by a
processor in a hardware system, such as processor 602.
Initially, the series of instructions are stored on a storage
device, such as mass storage 606. However, the series of
instructions can be stored on any suitable storage medium,
such as a diskette, CD-ROM, ROM, EEPROM, DVD,
Blu-ray disk, etc. Furthermore, the series of instructions
need not be stored locally, and could be received from a
remote storage device, such as server on a network, via

US 9,471,696 B2

9

network/communication interface 610. The instructions are
copied from the storage device, such as mass storage 606,
into system memory 604 and then accessed and executed by
processor 602.

In one embodiment, hardware system 600 may also
include I/O ports 618, a keyboard and pointing device 620,
a display 622 coupled to bus 612. I/O ports 618 are one or
more serial and/or parallel communication ports that provide
communication between additional peripheral devices,
which may be coupled to hardware system 600. A host
bridge 624 couples processor 602 to high performance I/O
bus 610. Hardware system 600 may further include video
memory (not shown) and a display device coupled to the
video memory. Collectively, these elements are intended to
represent a broad category of computer hardware systems,
including but not limited to general purpose computer
systems based on the x86-compatible processors manufac-
tured by Intel Corporation of Santa Clara, Calif., and the
x86-compatible processors manufactured by Advanced
Micro Devices (AMD), Inc., of Sunnyvale, Calif., as well as
any other suitable processor.

Hardware system 600 may include a variety of system
architectures; and various components of hardware system
600 may be rearranged. For example, cache 626 may be
on-chip with processor 602. Alternatively, cache 626 and
processor 602 may be packed together as a “processor
module,” with processor 602 being referred to as the “pro-
cessor core.” Furthermore, certain embodiments of the pres-
ent invention may not require nor include all of the above
components. For example, the peripheral devices shown
coupled to standard 1/O bus 612 may couple to high per-
formance 1/O bus 610. In addition, in some embodiments
only a single bus may exist with the components of hardware
system 600 being coupled to the single bus. Furthermore,
hardware system 600 may include additional components,
such as additional processors, storage devices, or memories.

An operating system manages and controls the operation
of hardware system 600, including the input and output of
data to and from software applications (not shown). The
operating system provides an interface between the software
applications being executed on the system and the hardware
components of the system. According to one embodiment of
the present invention, the operating system is the LINUX
operating system. However, the present invention may be
used with other suitable operating systems, such as the
Windows® 95/98/NT/XP/Server operating system, avail-
able from Microsoft Corporation of Redmond, Wash., the
Apple Macintosh Operating System, available from Apple
Computer Int. of Cupertino, Calif., UNIX operating sys-
tems, and the like.

The present invention has been explained with reference
to specific embodiments. For example, while embodiments
of the present invention have been described with reference
to specific hardware and software components, those skilled
in the art will appreciate that different combinations of
hardware and/or software components may also be used, and
that particular operations described as being implemented in
hardware might also be implemented in software or vice
versa. Other embodiments will be evident to those of ordi-
nary skill in the art. It is therefore not intended that the
present invention be limited, except as indicated by the
appended claims.

The invention claimed is:

1. A method for pathing analysis, the method comprising:

receiving, at a server, a query identifying one or more
nodes;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

identifying one or more prior queries that include at least

one of the one or more nodes;

accessing metadata associated with the one or more prior

queries;

selecting, based on the metadata, one or more data par-

titions for further processing by determining a first
plurality of frequencies, the first plurality of frequen-
cies comprising a frequency of a least frequently occur-
ring path associated with each of a second one or more
data partitions, determining a second plurality of fre-
quencies, the second plurality of frequencies compris-
ing a frequency of a most frequently occurring path
associated with each of the second one or more data
partitions, determining a lowest frequency of the first
plurality of frequencies, and selecting the one or more
data partitions, wherein a frequency of the second
plurality of frequencies associated with each of the one
or more data partitions is greater than the lowest
frequency of the first plurality of frequencies;
causing one or more computers to identify one or more
paths in the selected data partitions, wherein the one or
more paths comprise at least the one or more nodes; and
presenting the identified paths as an output to the query.

2. The method of claim 1 wherein identifying the one or
more prior queries comprises searching one or more hash
maps associated with the one or more nodes.

3. The method of claim 2 further comprising updating the
one or more hash maps associated with the one or more
nodes.

4. The method of claim 1 wherein the metadata comprises
one or more of an identifier of a data partition, a number of
unique paths comprising at least the one or more nodes, a
maximum frequency associated with a first unique path, and
a minimum frequency associated with a second unique path.

5. The method of claim 1 further comprising ordering the
selected data partitions to form a processing order.

6. The method of claim 1 wherein causing the one or more
computers to identify the one or more paths comprises
transferring a processing order of the selected data partitions
to the one or more computers.

7. The method of claim 1 further comprising storing
metadata associated with the query.

8. A system for path analysis, the system comprising:

one or more network interfaces;

at least one processor;

a memory; and

computer program code stored in a computer readable

storage medium, wherein the computer program code,
when executed, is operative to cause the at least one
processor to:

receive at a server, a query comprising one or more nodes;

identify one or more prior queries, wherein the one or

more prior queries comprise at least one of the one or
more nodes;

access metadata associated with the one or more prior

queries;

select based on the metadata, one or more data partitions

for further processing by determining a first plurality of
frequencies, the first plurality of frequencies compris-
ing a frequency of a least frequently occurring path
associated with each of a second one or more data
partitions, determining a second plurality of frequen-
cies, the second plurality of frequencies comprising a
frequency of a most frequently occurring path associ-
ated with each of the second one or more data parti-
tions, determining a lowest frequency of the first plu-
rality of frequencies, and selecting the one or more data

US 9,471,696 B2

11

partitions, wherein a frequency of the second plurality
of frequencies associated with each of the one or more
data partitions is greater than the lowest frequency of
the first plurality of frequencies;

cause one or more computers to identify one or more

paths in the selected data partitions, wherein the one or
more paths comprise at least the one or more nodes; and
present the identified paths as an output to the query.

9. The system of claim 8, wherein the computer program
code is further operative to cause the at least one processor
to identify the one or more prior queries comprises searching
one or more hash maps associated with the one or more
nodes.

10. The system of claim 9, wherein the computer program
code is further operative to cause the at least one processor
to update the one or more hash maps associated with the one
or more nodes.

11. The system of claim 8 wherein the metadata comprises
one or more of an identifier of a data partition, a number of
unique paths comprising at least the one or more nodes, a
maximum frequency associated with a first unique path, and
a minimum frequency associated with a second unique path.

12. The system of claim 8, wherein the computer program
code is further operative to cause the at least one processor
to order the selected data partitions to form a processing
order.

13. The system of claim 8, wherein the computer program
code is further operative to cause the at least one processor
to transfer a processing order of the selected data partitions
to the one or more computers.

14. The system of claim 8, wherein the computer program
code is further operative to cause the at least one processor
to store metadata associated with the query.

15. One or more computer-readable non-transitory stor-
age media embodying software operable when executed by
one or more computer systems to:

receive at a server, a query comprising one or more nodes;

identify one or more prior queries, wherein the one or

more prior queries comprise at least one of the one or
more nodes;

access metadata associated with the one or more prior

queries;

select based on the metadata, one or more data partitions

for further processing by determining a first plurality of
frequencies, the first plurality of frequencies compris-
ing a frequency of a least frequently occurring path

15

20

30

40

45

12

associated with each of a second one or more data
partitions, determining a second plurality of frequen-
cies, the second plurality of frequencies comprising a
frequency of a most frequently occurring path associ-
ated with each of the second one or more data parti-
tions, determining a lowest frequency of the first plu-
rality of frequencies, and selecting the one or more data
partitions, wherein a frequency of the second plurality
of frequencies associated with each of the one or more
data partitions is greater than the lowest frequency of
the first plurality of frequencies;

cause one or more computers to identify one or more

paths in the selected data partitions, wherein the one or
more paths comprise at least the one or more nodes; and
present the identified paths as an output to the query.

16. The computer-readable non-transitory storage media
of claim 15 further embodying software operable when
executed by one or more computer systems to identify the
one or more prior queries comprises searching one or more
hash maps associated with the one or more nodes.

17. The computer-readable non-transitory storage media
of claim 16 further embodying software operable when
executed by one or more computer systems to update the one
or more hash maps associated with the one or more nodes.

18. The computer-readable non-transitory storage media
of claim 15 wherein the metadata comprises one or more of
an identifier of a data partition, a number of unique paths
comprising at least the one or more nodes, a maximum
frequency associated with a first unique path, and a mini-
mum frequency associated with a second unique path.

19. The computer-readable non-transitory storage media
of claim 15 further embodying software operable when
executed by one or more computer systems to order the
selected data partitions to form a processing order.

20. The computer-readable non-transitory storage media
of claim 15 further embodying software operable when
executed by one or more computer systems to transfer a
processing order of the selected data partitions to the one or
more computers.

21. The computer-readable non-transitory storage media
of claim 15 further embodying software operable when
executed by one or more computer systems to cause the at
least one processor to store metadata associated with the

query.

